
A (very) short introduction to Gretl using scripts

Gaëlle Le Fol

August 22, 2022

1 Introduction

Gretl is a package for econometric analysis, written
in the C programming language. It is a free, open-
source software. It has an easy intuitive interface
(with rolling menus). A wide variety of economet-
rics estimators are available such as least squares,
maximum likelihood, GMM, single-equation and
system methods) or time series methods like ARMA,
GARCH, VARs and VECMs, unit-root and cointe-
gration tests, etc. This software can be downloaded
at http://gretl.sourceforge.net/ and run under
Windows, Mac/OS or Linux.
Gretl can also use scripts and this (short) introduction
aims at giving you the first necessary help to work with
scripts.

2 Getting started

2.1 Installing Gretl

Gretl can be download on any computer for free. Check
for system requirements. Gretl for

• Windows can be downloaded from
http://gretl.sourceforge.net/win32/

• macOS can be download from
http://gretl.sourceforge.net/osx.html

and choose Version 2022a.

2.2 Choosing preferences

Go into the Tools Menu and pick Preferences and
then General to choose, the Main Gretl’ directory
(where most of Gretl’s files are - like help files for
example), the appearence (Theme preference) and the
language (Language preference). Note that, any change
will only take effect after you restart Gretl.

2.3 Gretl windows

The data window, called gretl, is the window where you
can access the data and any other window proposed by
Gretl from the Menus or from the bottom of the window.

The ”gretl: script editor”, is the window that allows
you to create new scripts or gives you access to existing
scripts. The provided editor is syntax highliting (see
below).
The ”gretl console” window is where you can execute
directly some instructions.
The ”gretl: icon view” is giving you access to all
objects created since the beginning of the session
(scalars, models results, data sets, matrices ...).
The ”gretl: script output” is the execution journal
window where you will also find the results of the
executed set of instructions.

2.4 Working with scripts

To create a new script go intro the File Menu and
choose Script Files > New script > Gretl script.
Alternatively, you can also click on the ”New script”

button of the bottom of the Gretl main window.
A new window pops up called gretl: script editor.

This editor is a syntax highlighting editor with the
following color indications:

• Commands: commands are instructions, eventu-
ally with options, that return a set of values and
characters. Ex.: genr, labels, open, print, set,
summary.

• Options: options inside commands are usually
preceded by a double minus sign like for example
--by, --delete,--output, --quiet.

• Comments: comments start with a hashtag sign
(#) and finish when ending the line.

• Functions, and Implicit functions: functions are
instructions that return a value. Ex.: abs, mean,

1

http://gretl.sourceforge.net/
http://gretl.sourceforge.net/win32/
http://gretl.sourceforge.net/osx.html

obs, ones, sum. Implicit functions are also in-
structions that return a value but they can only
be used as the extraction of a command result and
as such, they refer to the last command that has
been executed. They are always preceded by a $
sign. Ex.: $coeff, $ess, $uhat, $yhat.

• Text: Text is a string character to be printed in a
text file or to save some results out of a command.
It has to be delimited by double quote signs.

• Types: Types of objects. It can be a matrix, a
series, a scalar, or a list.

2.5 Getting help

In order to access the list of the commands or functions
and implicit functions (and the details on them), go into
the Help menu of the Gretl main window and choose
Command references or Functions references.
You can aslo directly type help in the Gretl console
window :
> help # List of available commands

> help functions # List of available fcts

> help smpl # Details of the command smpl

2.6 Running a script & visualizing
objects

To run a script, you should either ”Ctrl + R”
(Windows) or ”Command + Control + R” (Mac), or

clic on the run button . If you want to run only
part of the script, you just have to select the part you
want to run before running it.

2.7 Working directory

Your working directory is the folder on your computer
in which you are currently working. This working
directory is the one where Gretl will look for data sets
to load by default or where it will write data sets,
graphs or text files.
set workdir "/Users/Gaelle/.../myworkingdir"

3 Data structure

3.1 Scalars, vectors and matrices

Vector are one-dimensional arrays and matrices are
one- or two-dimensional arrays of double-precision
floating-point numbers. They both fall into the matrix
type. Vectors and matrices creating examples are:
matrix X = zeros(2,3) # 2-lines and 3-colums

matrix of 0

matrix Z = ones(2,1) # 2-lines vector of 1

scalar a = 2*3 # scalar = 6

matrix A = { 1, 2, 3 ; 4, 5, a } # 2-lines

and 3 colums matrix with special values

Operations on matrices
matrix TA = t(A) # matrix transposition,

same as A’

matrix MP = A * B # matrix product

matrix INVC = inv(C) # inverse matrix

matrix KP = A ** B # Kronecker product

matrix ACUBE = Aˆ3 # matrix power

matrix HC = A ∼ B # horizontal "concatena-

tion" operators

matrix VC = A | B # vertical "concatenation"

operators

matrix VC2 = { X, Y } # vertical "concatena-

tion of series"

3.2 Series

Series are variables and the element on which Gretl
can work directly. Converting a matrix into a series
is sometimes very interesting. For example, if you
can plot matrices (using the accurate option in the
gnuplot command), plotting series are a lot easier.
To convert, vectors or matrices to series, you must be
sure that they have the same number of observations
as the other series in the dataset. Otherwise, you will
get an error.
series Aseries=A[1;2:T+1] # Convert first

column of matrix A, from line 2 to T+1 into

a serie

3.3 Lists

Another basic structure is the list. - an array containing
integers or characters. The main advantage of lists is
that the “columns” do not have to be of the same
length, unlike matrices and series.
list myvariables = varname1 varname2

4 Graphs

4.1 Scatter plots

A scatter plot is a type of plot using Cartesian
coordinates to display values for two variables of a set
of data.
gnuplot A B --output=AB.pdf # saved in a pdf

file

gnuplot A B --output=display # display on

the screen

gnuplot A B --fit=linear --output=display #

with a regression line

2

4.2 Time series plots

A time series plot is a type of plot displaying the
evolution of one variable against time. Note that, you
cannot do a time series plot if you did not declare your
data as being a time series (see section 6, hereafter).
gnuplot A --time-series --with-lines

--output=display

gnuplot A B --time-series --with-lines

--output=ABTS.pdf {set title ’Evolution of

A and B’; set xlabel "Dates"; set grid}# Time

evolution of A and B, with a title, a label

on the X-axis, and a grid

4.3 Histogram

A histogram is a graph used to represent the frequency
distribution of one variable. Histograms often classify
data into various “bins” or “range groups” (on the x−
axis) and count how many data points belong to each
of those bins (on the y−axis).
freq A --plot=display # Analyse the frequency

distribution of A and draw a histogram

5 Reading, merging and writ-

ing data files

5.1 Loading data

You can load many different data sets, - ASCII files
(”.txt” or ”.cvs”), Excel files (”.xls” or ”.xlsx”), ...,
and also Gretl’ dataset (”.gdt”), but any call with no
extension means gdt. By default, Gretl considers that
the data is in the working directory.
open data1 # Open the Gretl dataset named

data1

open "/Users/Gaelle/.../mydata/data1" #

Loading data1.gdt giving the path to it

open "Data1.xlsx" --rowoffset=1

--sheet="Sheet1" # Open the spreadsheet

"Sheet1" from the Excel dataset named Data1,

starting line 1

open "Data1.txt" # Open the ASCII file named

Data1.txt

5.2 Merging data

You can merge two datasets by adding new variables
or new observations. Note that the first dataset is
giving the final size of the merger.
open "Data1.gdt" # Open the Gretl dataset

named Data1

append "Data2.gdt" # Append the contens of

Data2 to the current dataset

Note that, if the two datasets you are merging have
the same variables names, Gretl will pile them up as you
would do when adding observations. On the contrary, if
the variables names are not the same, Gretl will merge
the two datasets horizontally as you would do when
adding variables.

5.3 Writing data

You can save data to a file. By default, all current
series are saved but you can also list the variables to
be saved. By default, Gretl will save ”gdt” files but
you can also choose other formats.
store "Data1 2" # Store the current dataset

in a Gretl database called "Data1 2.gdt"

store "Data1 2" A B # Store only the two

series A and B in the Gretl database called

"Data1 2.gdt"

store "Data1 2.csv" # Store the current

dataset in a comma separated value format

database called"Data1 2.csv"

6 Interesting other com-

mands

6.1 Data management

The setobs command allows to declare the type of
data you are working with as well as the periodicity of
your data.
setobs 1 1 --cross-section # Cross section

data from 1 with a step of 1

setobs 1916 1950 --time-series # Yearly data

from 1916 to 1950

setobs 12 1:1 --time-series # Monthly data

from 1:1 ... 1:12, 2:1 ...

The smpl command helps restricting the sample. You
can delete the missing observations.
list X = x1 x2 x3 # X is a list of 3 names

x1 x2 and x3

smpl --no-missing X # Getting rid of missing

obs. in X

smpl 2012:02 2022:08 # Restricting the

sample to Feb. 2012 to Aug. 2022

smpl 1 100 # Restricting the sample to the

first 100 observations

smpl --full # Coming back to the entire

sample

The dataset command performs various operations
on the data set as a whole, depending on the given
keyword, which must be addobs, insobs, clear,

compact, expand, transpose, sortby, dsortby,

resample, renumber or pad-daily. Note: except for

3

clear, these actions are not available when the dataset
is currently subsampled by selection of cases on some
Boolean criterion.
dataset clear # Clears out the current data,

returning gretl to its initial \empty" state

open "Data1.gdt" # Open the daily dataset

Data1

dataset compact 12 last # Compact to Montly

data, keeping the last daily obs.

The genr command allows to generate different
variables, matrices or scalars. It can also creates time
trends, indices or dummy variables:
genr b=1.5 # b is a scalar

genr b={1.5} # b is a matrix 1 x 1

genr time # time is a time trend var.

genr index # index is an index var.

genr timedum # dt1, dt2 are dummy time var.

To rename or delete a variable, you can use the
following commands:
rename X XNEW # X becomes XNEW

delete X # X is deleted

The summary command computes summary statistics
and can also provide statistics for sub-samples.
summary X # Statistics for X

summary X --simple # basic statistics only

summary X --by=year # descriptive statis-

tics by year. Note that year has to be an

existing serie

The freq command with no options given, displays
the frequency distribution for the series var (given by
name or number), with the number of bins and their
size chosen automatically.
freq x --normal # Compute the frequency dist.

and test for normality

freq x --plot="Fig1.pdf" # Compute the

frequency dist. and save the histogram

in a file called Fig1.pdf

The ols command is performing an Ordinary Least
Square estimation and provides usual regression
statistics.
ols y const x1 x2 # Regression of y on a

constant (const) and 2 explanatory var. x1

and x2

ols 4 0 5 # Regression of var nb 4 (of the

current dataset) on the explanatory var nb 5

with no constant

6.2 Printing & writing

The print command is a basic printing command
which prints out any type of object (scalar, matrix,
series ...), separated by a space, in the output window.

Note that, series cannot be mixt with anyother type of
object.
print y x1 x2 # Print the series y x1 x2

print A a # Print the matrix A and the scalar

a

The printf command prints scalar values, series,
matrices, or strings under the control of a format
string.
ols 1 0 2 3

scalar b = $coeff[2] # b takes the estimated

OLS coef. associated with var2

scalar se b = $stderr[2] # se b takes the

estimated OLS standard dev. of the coef.

associated with var2

printf "b = %.8g, std % .8g, t = %.4f \n ",b,

se b, b / se b # Print the sentence with the

2 estimated parameters and their ratio

The possible available formats for the printf command
are %s for strings, %d for integer, %x1.x2f for
floating-point value of x1 digits in total with x2
decimals (%10.6f : 10 digits in total with 3 digits
in the decimal part, %.5f : five decimals), %e for
scientific notation, and %g prints the number in the
shortest representation among the two.

The outfile command starts a block in which any
printed output is diverted to a file or buffer. Such a
block is terminated by the command end outfile,
after which output reverts to the default stream.
outfile Results.txt

ols 1 0 2 3

end outfile # Print the submitted command and

its results in the file text Results.txt

outfile Results.txt --quiet # To only print

the results of the osl regression
ols 1 0 2 3

end outfile

7 Programming tools

7.1 If-statement

If-statments should be used, if a set of instructions
has to be executed only under some conditions. The
instructions can be of the following simple form:

if condition
instructions

endif

where the condition must be a Boolean expression.

4

Example :
if k>=150

dum[k,1]=1

endif

If you have two (or more) sets of instructions, we have:

if condition
instructions1

else
instructions2

endif

Example :
if name == "Linear relation"

outfile "file1.txt" --quiet

else
outfile "file2.txt" --append --quiet

endif

Finally, if you have 2 (or more) conditions, we get:

if condition1
instructions1

elif condition2
instructions2

else
instructions3

endif

7.2 Loops

The loop command opens a special mode in which the
program accepts commands to be executed repeatedly.
You exit the mode of entering loop commands with
endloop.
loop 1000 # Loop 1000 times

loop i=1991..2000 # Loop for i from 1991 to

2000, step = 1

loop 1000 --progressive # For Monte Carlo

simulations. Will print summary statistics

at the end of the loop.

loop while b > .00001 # The loop will conti-

nue as long as b is greater than 0.00001

loop for (r=-.99; r<=.991; r+=.001) # Loop

for values of r from -0.99 to 0.99 by steps

of 0.01

loop foreach i xlist # Loop for each value of

i in a list called xlist

loop foreach i x1 x2 x3 # Loop for each value

of i in x1 x2 and x3

Each of these loop commands must be ended by an
endloop command.

7.3 Building your own function or
command

Gretl allows users to define their own functions or
commands. The difference betwwen the two being
what thei-y return (if anything). A command do not
return anything while a function does. They both may
be called via the command line. The syntax for defining
a function or a command looks like this:

function type fctname (parameters)
instructions
return returned object

end function

The type, which states the type of value returned
by the function, if any. This must be one of
void (if the function does not return anything),
scalar, series, matrix, list, string, bundle,

matrices, bundles or strings.

The parameters, to be listed between brakets,
include not only the name of the parameters but it
should be preceded by the type of the parameter, and
that is again one of scalar, series, matrix, list

or string.

Example of a command:

function void ols ess1 (series y, list xvars)

The command is called ols ess it takes y

and the list of explanatory variables as

parameters and returns nothing)
ols y const xvars --quiet # We run the

regression and print nothing out

printf "ESS = %g\n",$ess # We print the
ESS with a format

end function

Same type of example building a function:

function scalar ols ess2 (series y, list

xvars) # The function is called ols ess

it takes y and the list of explanatory

variables as parameters and returns the

error sum of squares (ess)
ols y const xvars --quiet # We run the

regression and print nothing out

printf "ESS = %g\n",$ess # We print the
ESS with a format
return $ess # The function returns the
ESS

end function

Calling your function: A user function is called by
typing its name followed by zero or more arguments
enclosed in parentheses. If there are two or more
arguments they must be separated by commas.

5

We built a function called ols ess with two
arguments, an endogenous variable (series) and a list
of exogenous variables (list). It runs the ols regression
and return the error sum of squares. We will first open
the data set that contains the variables. Built the list
of exogenous variables names, and call our command
or function:
open data1 # The data are in data1 - a gretl

data base

list xlist = 2 3 4 # We built a list made of

the values 2 3 and 4

Calling my command ols ess1:
ols ess1(price, xlist)# We pass the prices

series for y and xlist for xvars. We run

the ols regression and print the ESS, the

error sum of squares of the regression of

prices on a constant and variables numbers 2,

3 and 4

and same for my function ols ess2:
scalar ESS = ols ess2(price, xlist) # Same as

the command, but we return the value os the

computed ESS.

8 References

For more details and/or more commands and functions,
please refer to the Cottrell & Lucchetti (2022) Gretl’s
Users Guide: http://gretl.sourceforge.net/gret

l-help/gretl-guide.pdf

Another interesting reference, is the Adkins’ guide
(2018) ”Using gretl for Principles of Econometrics” that
you can find at http://www.learneconometrics.co

m/gretl/poe5/using gretl for POE5.pdf.

6

http://gretl.sourceforge.net/gretl-help/gretl-guide.pdf
http://gretl.sourceforge.net/gretl-help/gretl-guide.pdf
http://www.learneconometrics.com/gretl/poe5/using_gretl_for_POE5.pdf
http://www.learneconometrics.com/gretl/poe5/using_gretl_for_POE5.pdf

	Introduction
	Getting started
	Installing Gretl
	Choosing preferences
	Gretl windows
	Working with scripts
	Getting help
	Running a script & visualizing objects
	Working directory

	Data structure
	Scalars, vectors and matrices
	Series
	Lists

	Graphs
	Scatter plots
	Time series plots
	Histogram

	Reading, merging and writing data files
	Loading data
	Merging data
	Writing data

	Interesting other commands
	Data management
	Printing & writing

	Programming tools
	If-statement
	Loops
	Building your own function or command

	References

